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SUMMARY 
A finite volume method for solving the two-dimensional compressible Navier-Stokes equations is presented. 
Shortcomings of the direct extension to viscous flows of well known methods used for inviscid flows are 
demonstrated. Nevertheless, the method allows the computation of oscillation-free shocks with only a few 
iterations. The double-throat GAMM nozzle test case’ is considered. 
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INTRODUCTION 

The use of second-order TVD upwind schemes is becoming increasingly popular because of their 
intrinsic damping properties. Moreover, the upwinding leads to diagonally dominant matrices; 
therefore Gauss-Seidel relaxations can be used to solve unfactored implicit Limit- 
ations still remain; some of them are presented in this work which is outlined as follows. First an 
upwind method used for solving the Navier-Stokes equations with an explicit scheme is briefly 
described. The implementation of implicit schemes is then presented. Finally, results obtained on 
the double-throat GAMM nozzle are discussed. 

GOVERNING EQUATIONS AND NUMERICAL PROCEDURE 

The Navier-Stokes equations written in their two-dimensional conservation form are 

au aF ac 
at ax a y  

-+-+-=0, 

with F = F’ + F” and G = G‘ + G”, where F’ and G‘ are the advective fluxes and F” and G” are the 
diffusive fluxes. Equation (1) is solved with a two-step method. The first step is a local (explicit) 
approximation of the governing equations and the second step is an implicit correction employed 
to accelerate the convergence towards a steady state. 

At the explicit step the MUSCL approach is followed. This is based on a finite volume approach 
in which the variables U are assumed to vary linearly in each cell. The piecewise linear distribution 
L(u) is computed by applying the Harten and Osher4 reconstruction. Having calculated the space 
evolution of the variables U ,  it remains to solve at the interfaces the Riemann problems arising 
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from the piecewise distribution. For inviscid problems an efficient way of solving (approximately) 
these Riemann problems is to use the Van Lee flux vector ~pl i t t ing.~ Unfortunately this method 
cannot be used for viscous problems, at least in the boundary layers. 

For an explanation of these difficulties, let us consider the simpler computation of the flow over 
a flat plate. The Van Leer decomposition normal to the wall is written 

~ (2) 
dG' G3; - GJ- GS+ - G;tL 

where j +  1 is the location of the wall. Now, i f j  iind j- 1 are sufficiently close to the wall so that 
u 2: 0, and if the other variables are constant, except the x-velocity component u for which the no- 
slip condition imposes u j +  = O  (the initial guess commonly used on the flat plate usually satisfies 
these requirements), the Van Leer decomposition gives 

-+ - - 
dY AY AY 

The approximation of (3) for the y-momentum equation leads then to 

which has to be compared with the central difference approximation 

In the approximation (4) the y-velocity u does not appear; thus, if uj is not small enough, the 
value Of (4) may not be close to zero. From (4) it is clear that the Van Leer decomposition may give 
poor approximations when applied in a direction normal to a wall. Therefore Riemann solvers 
able to compute steady contact discontinuities, such as Roe6 or Osher' Riemann solvers, must be 
employed for viscous flows. 

IMPLICIT CORRECTION 

The role of the implicit correction is to propagate and diffuse the local increment AU through the 
computational domain in order to remove the stability restriction of the explicit approximation. 
An implicit operator often used results from a time derivation of (1). Approximating implicitly the 
resulting equation leads to 

[1+ At dA/dx + AtdB/ay]  6U = AU,  (6) 
where A and B are the Jacobians of the fluxes F and G ( A = a F / a U ,  B=dG/dU ) and AU is an 
explicit approximation of (1). 
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2 s-'= 
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0 3  -Pa T 0 - p a  3 2 

S =  
- 

1 - 1 

Factored Coakley scheme 

convective terms are considered, the Jacobians A and B can be diagonalized: 
The procedure used by Coakley' starts with a factorization of the operator (6). If only the 

A = S; A, S,,  B = Sy- ' A,S,, (7) 
where A, and A, are the diagonal matrices of the eigenvalues of A and B. The system is then 
'diagonalized' in the sense of Reference 9, bringing out of the derivatives the terms S; 'A, and 
Sy- A,. Finally, an upwind approximation is performed. Assuming an isotropic diffusion at the 
implicit step, the resulting scheme is written 

s; 1 p + AtA:a-/ax + AtA;a+/ax - Atva2/aXZ) s, 
x sy- 1 1 + Atn;a-/ay -I- AtA,-a +lay- Atva2/ay2) s y ~ u  = AU, (8) 

with v = p -  ' max(p, A + 2p,  yp/o), where o is the Prandtl number. 
Central approximation of the second-order space derivatives and first-order approximation of 

the first-order derivatives lead to simple tridiagonal matrices at the implicit step. In fact, implicit 
treatment of the boundaries may reintroduce a coupling between some variables. In order to see 
the influence of the factorization, an unfactored version of the Coakley scheme was also developed. 

' 

Unfactorized Coakley scheme 

The equivalent of (8) for the unfactorized implicit operator is 

a -  a+  a 2  

ax  ax  a x 2  
1 + AtS; ' A: - s,+ AtS; ' A; -S , -  AtS; ' V -  S i- 

a -  s, + AtS, A; - s, + AtSy-' 
a+ 
aY aY 

+ AtSy- A -  - 

If (9) is multiplied by S,,  introducing SU"=S,GU and S=S,S; '  we get 

a -  a+ a 2  

ax ax a x 2  
6 U " + A t A ~ - 6 U " + A t A ; - 6 U " - A t v - - - b U X  

a -  a+ a 2  

aY dY aY2 
+ AtS- ' A; - S6U" + AtS- ' Ay- - S6 U x - AtS- ' v - S6 U x = AU. 

Bringing out of the y-derivatives of the matrices S ,  one is left with 

t 1 + AtAx + a - /ax + A t h  - a +/ax - Atva2/ax2 
+ A t s -  iny+sa- lay  + Ats-  1 ~ y -  sa+/ay  - Atva21ay2pux = Au.  

Because of the form (9) of the S and S-' matrices (in a Cartesian mesh), 

(9) 

the equation for the entropy decouples. With the unfactored scheme it is no longer possible to 
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invert the matrix of the implicit operator simply with a direct procedure, but as the upwinding 
leads to a diagonally dominant matrix, iterative methods can be used efficiently. Following 
Reference 2, a line Gauss-Seidel relaxation is used. Two relaxation sweeps, one in each direction, 
are needed, but every station needs a 3 x 3 block-tridiagonal system to be solved and this causes an 
important increase in computational time. Other types of rclaxation have been considered in 
References 3 and 10. 

RESULTS OBTAINED WITH THE IMPLJCIT SCHEMES 

The method has been tested on the double-throat GAMM nozzle,' and similar results to those of 
the other participants have been obtained. One advantage of the Harten-Osher reconstruction is 
that the slope of the linear distribution does not automatically vanish at extrema as it does with 
TVD limiters. This allows computations to be done on coarser grids. For instance, discrepancies 
between computations on 220 x 33 and 80 x 15 grids are almost invisible for the case Re= 100. 

The implicit schemes allow the computation of steady states similar to those obtained by the 
explicit scheme, but at a lower computational cost. The history of convergence for the implicit 
factored Coakley scheme is presented in Figure 1 for different CFL numbers. The CFL number is 
defined by 

with 

At=CFL m.in(At,, At,,), 

Atx = min 

where v = max(p, I + 2p, yp/a) and a is the Prandtl number. 
A spectacular acceleration of the convergence towards the steady state is obtained with the 

factored scheme, but for CFL=900 the residue increases after 250 iterations, leading to a 
divergence. This phenomenon is due to the factorization, which induces an error proportional to 
the product of the CFL numbers in the x- and y-directions. Using the non-factored Coakley 
scheme, higher CFL numbers can be utilized, but, unless a more complete treatment of the viscous 
derivatives at the implicit step is carried out," no improvement in the convergence rate is 

0 0 0 0 0 0 0 0  - N (11 0. ln in P m 8 0 0 0 0 0 0 0 

Iterations 

Figure 1 .  History of convergence for the implicit factored Coakley scheme; Re= 100 
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obtained (Figure 2). As a result of the inherent non-linearity of the reconstruction, periodic 
oscillations in the convergence curve are set up (Figure 3). When the first-order scheme (constant 
distribution within each cell) is used, the machine accuracy can be reached, at least at CFL = 50 
(Figure 4). For higher CFL numbers a sudden change in the slope appears after 1400 iterations. An 
inspection of the residuals shows that their highest values are of high frequency; they are generated 
locally by the wall and the exit boundary. 

Unfortunately, high-frequency components of the error are badly damped out by the factored 
Coakley scheme" when large values of At are used. For smaller At the damping properties of the 
scheme become better a t  high frequencies. Therefore, if a small CFL number is used just after the 
sudden change in the slope, an increased convergence rate must be found. This is indeed verified 
(Figure 5),  but one can observe also that once the scheme has damped the high frequencies 
efficiently, a new change occurs in the slope. Again the low frequencies dominate the error and the 
CFL number has to be increased to improve the convergence rate again. In summary, in 
contradiction to what was found in References 3 and 12, it is difficult to say that the best 

102 PU Residual ~ - 1  

100 i, 
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0 0 0 0 0 0 0 0 0 0  ~vmrn~~xu7n~ 
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Figure 2. History of convergence for the unfactored first-order scheme; Re = 100 
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Figure 3. History of convergence for the implicit factored Coakley scheme; Re = 100 
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Figure 4. History of convergence for the factored first-order scheme; Re = 100 
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Figure 5. History of convergence for the factored first-order scheme, with modification of the CFL number for damping 
the high frequencies; Re = 100 

convergence rate results from an optimal time step existing for the factored implicit scheme, But, 
,for one given range of the dominant error frequencies, such an optimal time step exists. 

Therefore the most natural procedure for increasing the convergence rate is to use a CFL 
number which varies with the iterations. Such a procedure has been developed and the resulting 
convergence history is presented in Figure 6. The CFL number is computed from an estimation of 
the slope of the convergence curve. When the slope increases, the CFL number is tentatively 
changed (e.g. decreased), but if this change does not increase the convergence, it is reversed (i.e. the 
CFL will be increased). With this procedure, which could be further improved, the residual is 
lowered to machine zero in about 2000 iterations. 

It has also been verified that, for the first-order scheme, the implicit correction leads to steady 
states which do not depend on the time steps. Such a verification is difficult to perform for second- 
order schemes because of the limiting cycle behaviour. 
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Figure 6. History of convergence for the factored first-order scheme, with variable CFL number; Re= 100 

CONCLUSIONS 

The use of implicit upwind methods allows an important convergence acceleration. The 
superiority of using a varying time step instead of a constant time step has been demonstrated. The 
procedure of a self-adjusting CFL number avoids the need for a priori knowledge of some 
‘optimal’ CFL number which was often reported for factorized implicit schemes. Another 
possibility of increasing the convergence is to use implicit schemes as a relaxation scheme in a 
multigrid procedure.’ 
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